skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DEELEY, ROBIN J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building on work of Ruelle and Putnam in the Smale space case, Thomsen defined the homoclinic and heteroclinic -algebras for an expansive dynamical system. In this paper we define a class of expansive dynamical systems, called synchronizing dynamical systems, that exhibit hyperbolic behavior almost everywhere. Synchronizing dynamical systems generalize Smale spaces (and even finitely presented systems). Yet they still have desirable dynamical properties such as having a dense set of periodic points. We study various -algebras associated with a synchronizing dynamical system. Among other results, we show that the homoclinic algebra of a synchronizing system contains an ideal which behaves like the homoclinic algebra of a Smale space. 
    more » « less
  2. Abstract Scarparo has constructed counterexamples to Matui’s HK-conjecture. These counterexamples and other known counterexamples are essentially principal but not principal. In the present paper, a counterexample to the HK-conjecture that is principal is given. Like Scarparo’s original counterexample, our counterexample is the transformation groupoid associated to a particular odometer. However, the relevant group is the fundamental group of a flat manifold (and hence is torsion-free) and the associated odometer action is free. The examples discussed here do satisfy the rational version of the HK-conjecture. 
    more » « less